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Abstract 

Utilizing the icosahedral symmetry of the Cm molecule by amalgamating two methods, we solve the vibrational eigen- 
frequency problem for carbon-60 to obtain exact algebraic expressions for the characteristic polynomials of the vibration. 
The inter-atomic interaction consists of four force constants, two for bond-stretching and two for angle-oscillation. @ 1997 
Elsevier Science B.V. 
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1. Introduction 

Since the discovery of the fullerene molecules, nu- 
merous papers have been published discussing the 

chemical, physical and mathematical problems related 
to these molecules. In particular, there were several 
papers [ 1 ] on the theoretical studies of the vibrational 

motion of the Cm molecule. Because the vibration 
problem requires the diagonalization of a 180 x 180 
matrix with elements which are functions of the force 
constants, vibrational eigenfrequencies of Cm have 

been computed only numerically for several choices 
of the spring constants. In the present paper, by uti- 
lizing the symmetry properties of the C6n molecule, 
we are able to solve the vibration problem of C60 
exactly and analytically. Explicit characteristic poly- 

nomials for the eigenfrequencies, one for each irre- 
ducible representation of the symmetry group of the 

molecule, are obtained. We adopt in the present calcu- 

lation a potential function which contains a set of four 

force constants, two for bond-stretching and two for 
angular motion between pairs of neighboring bonds. 
The bond-stretching introduces a~~ interaction between 

neighboring atoms, but the angular oscillations gener- 
ate non-nearest-neighbor interactions among atoms. 

2. Method 

The solution of the vibration problem of carbon-60 
can be greatly simplified by taking advantage of the 
symmetry properties of the molecule. Two possible 

approaches may be used. 
It was emphasized [2] that the symmetry group of 

Can possesses an Abelian subgroup. The irreducible 
representation of this subgroup is one-dimensional, 
and can be characterized by an integer m. (See below, 

Section 3.) The molecule also has inversion symme- 
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try with eigenvalues p = f 1. Thus, given m and p, the 
displacements of the six atoms located at the vertices 
of one hexagon are sufficient to determine the dis- 
placements of all 60 atoms. Utilizing this symmetry, 

we can drastically reduce the order of the vibration 

matrix from 180 to 18. However, analytic computa- 
tion of the determinant for this reduced 18 x 18 matrix 

remains beyond our present computational power. 

Table 1 
The irreducible representations for each (mp) 

The vibration problem may also be simplified if all 
irreducible basis vectors with respect to the symme- 

try group of the molecule can be found. With respect 
to an irreducible basis set, which transforms accord- 
ing to the ,CL representation of the symmetry group, 
the vibration matrix can be reduced to an order dp 
(= the degeneracy of the irreducible representation). 
For c6a vibrations, the largest d, is 8 (see Eq. (1) 

below). The calculation of such a (d, x d,) secular 
determinant should be quite feasible. The construction 

of irreducible basis vectors from arbitrary vectors can 

be achieved by using the projection operator method. 

However, this approach suffers from the drawbacks 
that (i) the complete 180 x 180 vibration matrix has 
to be constructed, and (ii) it is cumbersome to iden- 
tify the dp linearly independent rows (or columns) in 
the 180 x 180 projection matrices. 

(tnpnp) RI R3 R3, R4 R5 

(f2, +) 4 6 8 
(fl, +) 4 6 8 

(0, +) 2 4 4 8 
(f2, -) 5 6 7 
(fl, -) 5 6 7 

(0, -) 1 5 5 7 

resentation to a sum of 48 irreducible representations 
of I x Z2, 

[2R1+ @ 4R3, @ 4R3r+ @ 6R4+ @ 8R5+1 

~[R1_$5R3_~5R3,_~6R4_$7RS_]. (1) 

The first bracket contains 24 even-parity irreducible 

representations and the second contains 24 odd-parity 
ones. 

The method used in this paper for solving the c60 
vibration problem is the amalgamation of the two ideas 
discussed above. First, we shall obtain the reduced 
18 x 18 vibration matrix, thereby avoiding the difficul- 

ties (i) and (ii) above. The projection operators are 
then constructed in the reduced 18-dimensional vec- 

tor space to project out irreducible basis vectors for 

the various irreducible representations. Thus, secular 
determinants of order dp are obtained, the largest of 
which has an order of 8. 

The symmetry group I x Z2 contains an Abelian 
subgroup h, h = {p”,p’,p2,p3, p4}, where p is an 
element of I representing a rotation through an angle 
2~/5. The irreducible representations of this Abelian 
subgroup are one-dimensional, and are characterized 

by an integer m (in analogy with the quantum number 
m for the rotation group), 

3. Symmetry of the C~,J molecule 

p = ?l-*, m = -2,-l,O, 1,2, 

17 = exp( 2ti/5). (2) 

Since [p, P] = 0, where P is the inversion operator 

with eigenvalues p = f 1, the 180 x 180 vibration ma- 
trix M( E V - u2T) can be transformed into a block- 
diagonal form with each diagonal block MmP belong- 
ing to only one (mp), with M, = M-, due to the 
symmetry between m and -m. The irreducible repre- 
sentation content for each M, can be found from the 
character table and is exhibited in Table 1. 

The c,5c molecule, being a truncated icosahedron, is The 60 carbon atoms in C@J can be symmetrically 

invariant under the symmetry group 1 x Z2 where I is divided [ 21 into ten sets, each consisting of 60/ 10 = 6 

the icosahedral group and Z2 is the two-element group atoms (see Fig. 1). We label the 60 atoms by three 

consisting of the inversion operator P and the identity. numbers (nt , nz, n3). nl = f 1 denotes whether the 

The 180 components of the displacement vectors of atom is in the upper or lower hemisphere; n2, ranging 
the 60 carbon nuclei from their equilibrium positions from 0 to 4, designates the azimuthal sector which the 

generate a 180-dimensional representation of the 1 ZO- atom is in; and n3 = I, II, . . . , VI specifies atoms in the 

element group I x Z2. Using the character table of set. For the basic set of atoms, 121 = +l, n2 = 0. Thus, 

this group, we can reduce this 180-dimensional rep- for a given m and parity p, knowing the displacement 
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Fig. 1. The bond arrangement for Cm. The heavy and thin lines 
represent respectively the double and single bonds. The six atoms 
forming the basic set are indicated. 

vectors for the 6 atoms in the basic set is enough to 
determine the displacements for all 60 atoms. For ex- 
ample, if atom X is in the basic set with nt = +I, 
n2 =0,113 =xandatomX’islabeledby(1,2,x’=x), 
the displacement vectors of these two atoms are re- 
lated by Dxl = Dxv- 2m. However, care must be taken 
when X’ is in the lower hemisphere. For instance, if 
X= (1,O.n) and X’ = (-1,0,x) are antipodes, then 

DXJ =pDx, (3) 

where p is the parity eigenvalue. With the local coor- 
dinate systems to be defined below, Eq. (3) implies 
that 

ax/ = pax, bx, = pcx, cxj = pbx. (4) 

Notice that the displacement vectors for atoms outside 
the basic set are all complex quantities if M # 0. 

4. The vibration matrix 

The displacement vector D of each atom is specified 
with respect to a local coordinate system defined at the 
atom’s equilibrium site. We designate the three unit 
base vectors for atomic sit: X as (lix, 8x, 2x), with 
iix along the double bound, bx and &x along the single 
bonds, in a counterclockwise sense (Fig. 2). Thus, 

Dx = ax& + bx& + c&+x. (5) 

Fig. 2. The atom X surrounded by atoms W, Y and Z in the Cm 
molecule. The three unit base vectors (ci, & 2) and three bond 
angles (cu, p, y) are shown for each atom. 

Notice that these unit base vectors are not mutually 
orthogonal. The angles between the bonds for a given 
atom will be denoted in the clockwise sense by crx, 
px, yx (Fig. 2). At ~uilibrium, LY = 39~/5, p = y = 
2~13, and the dot-pr~ucts between base vectors of 
the same atom and of neigh~ring atoms can be easily 
obtained. 

The kinetic and potential energies of the c60 
molecule can all be expressed in terms of the 
3 x 6 = 18 displacement-components of the atoms in 
the basic set for each (mp) . Thus, with the concept of 
basic set, the order of the vibration matrix is reduced 
from 180 down to 18. Since the kinetic and potential 
energies for the whole molecule are ten times that of 
the atoms in the basic set due to icosahedral symme- 
try, it is only necessary to compute the energies of 
atoms and bonds pert~ning to the basic set. 

Consider first the kinetic energy. Write the kinetic 
energy of atom X as TX. Then 

where the mass of the carbon atom is set to unity for 
convenience, and r is a 3 x 3 matrix, 
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7= -- ( 
1 1 1 -- -- 

I 1* $(lZ,, . 
-1 i(l-r) 1 ) 

The dots represent derivatives with respect to time. If 
all the atomic coordinates oscillate with frequency w 
(E fi), then 

ax 
TX = iA(al;, b;,ci)r bx . 

0 cx 

(7) 

The kinetic energy T of the six carbon atoms in the 

basic set can thus be written in the form 

T = ;@*K@, (8) 

where $ is an 18-entry column matrix formed from 

components of D, 1+5 is its transpose, 

# = (al,bl,cl,all,bII,...,bw,cvl), (9) 

and K is a block-diagonal matrix with six blocks of 7 

along its main diagonal. 
The potential energy of c60 consists of terms which 

arise from (i) the change in lengths of single bonds 

and double bonds between neighboring atoms, and 
(ii) the change in angles between adjacent bonds for 

each atom. Since the C&I molecule is topologicahy a 
trivalent polyhedron, there are three potential energy 

terms due to angular motion for each atom. 

4. I. Potential energy for bond-stretching 

There are 3 x 60/2 = 90 bonds between pairs of 

neighboring atoms in c60. Of the 90/10 = 9 bonds 
pertaining to each set of atoms, there are three dou- 

ble bonds and six single bonds. The double and sin- 
gle bonds assigned to the basic set are respectively, 

{(Z,ZZ), (ZYWZZ), (W,ZX)}and{(Z,K’Z), (ZZ,ZZZ), 
(ZZ,ZV), (ZZZ,V), (VVZ)},asexhibitedinFig. 3. 

The vibrational potential energy due to bond- 
stretching between neighboring atoms X and U is of 
the general form 

Vxt, = $(AL)*, (10) 

where k is the spring constant appropriate for the XU 
bond. (The spring constants, ks and kD, for single 
and double bonds are assumed to be different.) AL, 
the change in bond-length from its equilibrium length 

Fig. 3. The six atoms (nl = +l, n2 = 0. n3 = I, II, , M) and 
nine bonds (three double and six single) pertaining to the basic 
set for Cm. 

L, can be computed from the displacement vectors of 

atoms X and U, 

(AL)=[(Dx-L2x-Du)~(Dx-LOx-Du)]“2 

- L, (11) 

where bx is the unit base vector along the XU bond 
at X, 

(AL)* = (AL)*(AL), (12) 

which, for IDI < L, becomes 

(AL)*=[(Dx-Drr).axl*.[(D,-D,).~,]. 

(13) 

(The complex conjugations in Eqs. ( 12) and ( 13) are 
required because D can be complex.) Hence 

The R’s in E!q. (14) are 3 x 3 matrices with constant 
elements which depend only on the geometry of the 
molecule. 

The total potential energy for the three double bonds 
and six single bonds in the basic set can be readily 
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assembled from the parts VX~. Notice that three of 
these bonds, {(I, WZ), (NW) and (VI, IX)}, end 
in atoms ( VZI, vI11, and IX) which do not belong to 
the basic set. Nevertheless, their displacement vectors 
can be related to those in the basic set of atoms. For 
instance, 

Dw = $‘DI , DIx = pq3 "D;, (16) 

where the primed displacement vector D’ has fauns- 
posed b, c components, 

D;= (w,w,bv). (17) 

Thus the total stretching potential energy for bonds in 
the basic set may be written in the form 

9* vsrdkt (18) 

where~=(al,bl,cl,all,bll,...,bn,cvl)asin(9), 
and V,, is a 6 x 6 block-matrix with each block a 3 x 3 
matrix, which can be formed from the matrices R in 
(14). 

4.2. Potential energy for angular motion 

The change in angles between the three bonds for 
a given atom X gives rise to a potential energy 

V angle = r;2f$k&W*tW + ;k&W)*(W) 

-I- ~~p@~)*(~y)L (19) 

where the three terms correspond to the three angular 
degrees of freedom. The elastic force constants for 
angles p and y are set to be equal due to symmetry. The 
factor L2 is inserted so as to give all force constants 
(stretching and angular motion) the same dimension. 

Consider the angular motion for the angle cy, i.e., 
the first term in Eq. ( 19), of atom X. With reference to 
Fig. 2, the distances ( Lxr , LXZ, LIZ ) between atoms X 
and Y, X and 2, and Y and 2, can be easily computed 
for small displacements. We have 

Lxy~L+bx*(Dr-D~)~ 

Lx2 = L+i?x.(Dz -Ox), 

Lu x IL*& - 2x)* 

+2L(& -ax) . (Dy - Dz)]“*. (20) 

With displacement vectors D in Eq. (20) expressed 
in terms of base vectors, we obtain So, the change in 
the angle cy, 

B,,_m 4oL [2(5 + r)ax - 1Obx - IOcx 

-(S+~)~~+lOby-~5+~~~z+lOc~l, (21) 

with r E 6. Thus the potential energy due to the 
change in angle (Y for atom X can be written in matrix 
form as 

= L*rk (&)*(SLY) 

~n~~~~~~~~~~~~, (22) 

where the exhibited nine elements of the matrix A are 
themselves 3 x 3 submatrices, each of which is formed 
from the coefficients in Eq. (2 1) . 

The potential energies due to the change in angles 
p and y for atom X can be similarly computed. 

Using the basic modules such as (22)) we can now 
put together the potential energy due to angular motion 
for the six atoms in the basic set. Again, as in the 
calculation of the potential energy for end-stretching, 
if displacement vectors of atoms not belonging to the 
basic set appear, replacements like ( 16) must be made. 
Thus, the potential energy is expressible in terms of 
the displacement vectors of the basic set atoms only. 

By combining the potential energies due to bond- 
stretching and angular motion, the total potential en- 
ergy can be written as 

v = v& + Vans@ = _li$* VI@, (23) 

where$=(al,bl,cr,arr,brr ,..., bvt,cw)asbefore. 
The 18 x 18 potential matrix V is rather cumbersome; 
its elements are linear functions of the four force con- 
stants (ks, kD, k,, kp) and are also dependent on (mp) 
because displacements of atoms not pertaining to the 
basic set are involved (see Eq. ( 16) ) . 

The vibration matrix M for given (mp) is then 

M=V-UK, (24) 

where A z w2. Because of the symmetry M, = 
M p, we only need to diagonalize six (instead of 
IO;%, matrices. This is for p = f 1, and m = 0, 1,2. 
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5. Vibrational characteristic polynomials 

The characteristic polynomial Pmp for given m and 
p may, in theory, be obtained by expanding the deter- 
minant of the vibration matrix M,. Then, by factor- 
ing Pmp, polynomials Qpp belonging to different ir- 
reducible representations in Eq. ( 1) can hopefully be 
found. In fact, from Table 1, we expect to obtain 

f’2f = QwQ4*Qsi. (25) 

(The degrees in A of these polynomials can be read 
out directly from Eq. ( 1) .) However, in practice, this 
procedure cannot possibly be implemented due to the 
enormous size of the vibration matrix. Even with the 
aid of a computer, it would not be possible to evaluate 
the determinant of a 18 x 18 matrix as complex as one 
like M, . 

In order to extract from M, the characteristic poly- 
nomial for a given irreducible representation R, with- 
out fully expanding the 18 x 18 determinant, we take 
advantage of the projection technique in group theory. 

The projection matrix P tp) for a given irreducible 
representation Rp of the symmetry group I x 22 can 
be easily constructed using standard procedures [ 31, 

p(r) = !!!L tJ rxl”(~)l*~s 
s 

where g, the order of the group, is 120. n, and x(p) 
are respectively the dimension and the character of the 
irreducible representation R,. OS is the representation 
matrix for the group element S. The summation runs 
through all elements of the group. P(@) is Hermitian. 

To find the proper linear combinations of the dis- 
placements of the six atoms in the basic set which form 
bases for the ten irreducible representations in Eq. ( 1) , 
we need to construct appropriate projection operators 
in this 18-dimensional sub-space of displacements. 
These operators in the reduced space can be obtained 
from the full projection operators, P(p), given by (26) 
in the following way. 

Denote by P the 180 x 1 column matrix for the 
displacements of the 60 atoms. The first 18 elements 
of ly represent the displacement of the six atoms in the 
basic set, i.e., $ of Eq. (9). The rest of the elements in 

p, being displacements of atoms in the other sets, are 
all expressible in terms of the components of $. Thus, 

~=~~~rlm~,r12m~,....P774m~‘l, (27) 

where $’ G (# with b, c components interchanged). 
Now, 

p(+ = @, (28) 

where @J is also a 180 x 1 column matrix. Denote the 
first 18 elements of @ by (p. The linear relationship 
between 4p and $ thus provides us with the projec- 
tion matrix p(p) in the reduced 18-dimensional vector 
space, i.e., 

(p = tL++. (29) 

Notice that the projection matrix t#) obtained has 
an order of 18 and a rank ,X (= the dimension of the 
irreducible representation Rp) which is less than 18. 
Thus, there can only be ,u columns (or rows) of p(p) 
that are linearly independent. 

Designate by $#‘) the 18 x p matrix formed by 
deleting the linearly dependent columns of Q(P). 
Delete also the corresponding rows in M,, and des- 
ignate the remaining ,!L x 18 matrix by I%#,,. The 
characteristic polynomial QFp for the irreducible 
representation R, and parity p is then given by the 
determinant of the matrix product A?,@(@), which 
has the order ,u, 

Q pp = det[ timp@‘F’]. (30) 

The characteristic polynomials for all irreducible rep- 
resentations can thus be computed. Some of the poly- 
nomials are exhibited below. Q4k and Qs& are rather 
lengthy and will be given elsewhere. We have 

Qt, =2A2+A(-4ko+(-5+r)ks) +2(3-r)k&s, 

Qt_ = A - 3(3 + r)k,s, 

Q3+ = A( 12A3 + A2[ -3(5 + r)ks - 30k, 

+2(-125+3r)kp] +A{[4(63+ IOr)ks 

- 2(-265 + 13r)k,]kS + 8(78 + llr)k;} 

+ [-16(29+9r)ks -32(25+4r)k,]$ 

- 8(29+9r)k;), 
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Q3_=A(-12A4JrA3[24ko-3(-15fr)ks 

+ 30k, - 2(-61+ 15r)kp] 

+ A*{-3[ks(25ko - 3rkD -+ 1Oks) 

+ ( 18kD 4 25ks - 5rks) k,] 

+2[-95kD+2lrko- 196ks+58rks 

+ (-134i42r)k,]kp+2(-111 +43r)k$} 

+ A{3kDks[-2(-6 + r)ks + (35 - llr)k,] 

-4[ks(-126kD+39rkD-53ks+lSrks) 

+ 2( -44kD + 12rki, - 85ks + 32rks) k,] ka 

+ [ 192ko - 64rkD + 478ks - 194rks 

+ (456 - 20Or) k,] k;} 

+ 12kg{6koks[(-3+r)ks+2(-5+2r)k,] 

+ [ ks( -9kD -t- 3rkD - 14ks + 6rks) 

+2(-14ko+6rkD--25ks+llrks)k,]kp}), 

Q31+ = 12h4 + A3 [ -3Oks - 15(5 + r) k, 

- 4(50 + 3r)kpl 

+ A2(30(5 + r)kska + [ 18( 19+ r)ks 

+4(295+68r)k,]kp+4(186+35r)k$} 

+ A{ -40(41+ 10r) ksk,kp 

+ [ -8( 103 -I- 21r)ks 

_ I@265 -t 86r)k,]k$ - 4( 103 +21r)ks} 

+ 32(65 f 22r)k,ki(2ks -t kp), 

Q~c_ = -12A” + A4[24kD - 6(-10 + r)ks 

+~5(5+~)k~-4(-28+3r)k~] 

+ A3{3( -35 -t 3r)kDks 

+15( -5+r)k$+[ -6( 16+r)ku-30( lO+r)ks]k, 

+[2(-85+21r)kD+2(-251+43r)ks-472ka]kp 

+ 2( -51 + 1 Ir)k$) + A2( -3(-37 + 7rfkDkg 

+[-3(-115-b7r)k~ks+3OOkg]k, 

+{-6(-109+3lr)k~ks- 16(-32+7r)ki 

+[-32(-19+4r)ku-12(-155+llr)ks]k,}kp 

+ f--44(-3 f r)kD 

-2(-179+41r)ks- 16(-19+4r)k,]kg) 

+ A(60(-5 + r)kok$k, + (192(-3 + r)kDk$ 

-t[24(-85+23r)k~ks+160(-lO+r)k~lk,}kp 

+ {96( -3 + r)kDks - 128ki 

+[128(-3fr)kD+8(-125+29r)ks]k,}ki) 

- 480( -3 + r) k,k$k,kp 

- 80( -9kD + 3rkD - 4ks) ksk,k;. 

Remarks. (i) Notice that both Qs+ and &3- contain 
a root of A = 0. Thus, for each parity, A = 0 occurs 
three times (for m = + 1 , 0, - 1) , co~esponding to 
the translation (p = -I ) or rotation (p = t I ) of the 
molecule as a whole. 

(ii) Simple expressions for the eigenfrequency are 
obtainable only for representations RI*. They are 

(6J=dx) 

A,+ = kD + $r(r - 1)ks 

k k~+~(r-l)koks+~(3-r)k~, 

At_ = 3(3 + r)kp. (31) 

Notice that At, depends on ks, kD only, and AI _ on kp 
only. We also observe that As+, As’+ are independent 
of kD, and all other frequencies depend on all four 
force constants. 

(iii) All eigenfr~uencies of vibration can be read- 
ily computed numerically from the characteristic equa- 
tions QgP = 0 if the force constants are given. Con- 
versely, the four force constants can be determined by 
comparing the calculated spectrum with the experi- 
mentally measured frequencies. The work on the nu- 
merical fits as well as normal modes of vibration will 
be published later. 

(iv) If k,, kp = 0 and ks, kD # 0, then one half 
of the 180 eigenfrequencies vanish. This is the conse- 
quence of the fact that in this case the constant poten- 
tial energy surface for C6a is dependent only on the 90 
bond lengths, not on ail 180 degrees of freedom. The 
same reasoning explains the fact that there are 120 or 
150 zero frequencies respectively for the cases of k,, 
kp = 0 together with kD = 0 or ks = 0. 

(v) For ks, kD = 0 and k,, kp # 0, there are only 
35 (not 90) zero frequencies. This is because angu- 
Iar motion involves more displacements than bond- 
stretching does. 
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(vi) We have also studied special cases, such as vibrations, on the occasion of his ninetieth birthday. 
ks # 0, kD = k, = kp = 0; k,, # 0, ks = k, = ka = The work of C.N.Y. was supported in part by NSF 
0; and k, # 0, ks = kD = kp = 0. In each of these Grant No. PRY-93~888. 
three cases, all the eigenfrequencies can be obtained 
in closed form, and are in agreement with previous 
studies [ I]. References 
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